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The Problem
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Network design (demand, transportation times)

Electric Power Generation (demand, generators availability, water 
inflows, spot market costs)

Network interdiction (attack successes, network data)
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Network Interdiction Problems

xij = 1 if interdiction of arc (i.j) is attempted, 0 otherwise

lij , dij= Nominal Arc (i.j) Length, Delay (Shortest Path problem)

uij= Nominal Arc (i,j) Capacity (Maximum Flow problem)

rij= Amount of resource needed to attempt to interdict the Arc (i,j)

ξξξξij= Attack success for Arc (i,j) (Random variable):
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(�Delay� for the Shortest Path problem)

(�Diminished� capacity for the Max. Flow Prob.)

MAX E{ Min Length from s to t }

s

i

j

t
MIN E{ Max Flow from s to t }



Our Approach: 
Sampling Version of Benders Decomp

� Other researchers have worked in this arena, 
e.g., Higle and Sen, Dantzig and Glynn,
Dantzig and Infanger

� Our approach is new, and probably 
conceptually simpler 
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Benders Decomposition (I)

z = c x + E{ h(x,ξξξξ ) }

ΘΘΘΘ = E{ h(x,ξξξξ ) }
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Benders Decomposition (II)

This is a separable problem:

Subproblem (and its dual) associated to a first stage feasible solution
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Benders Decomposition (III)
G and g are computed as the expectation of  ππππΒΒΒΒ and ππππd
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But exact values for Gk and gk are unobtainable if
� The number of �scenarios� is large (even if finite)
� Some of the distributions are continuous
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�May we replace the actual Gk and gk by estimators?�

Benders Decomposition (IV)
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Estimation Procedure (I)
How do the estimated cuts behave at the optimal solution?
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Estimation Procedure (II)
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Estimation Procedure (III)

pn = Probability that      
{at least n cuts (among 
5) are �valid� at x*} x

z*

In general, for a total of n cuts we may find m=m(n, αααα) such that:

Pr{ at least m among n cuts are valid at  x* }  ≥≥≥≥ 1 −−−− αααα
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p5 = Pr{All} ≥ 3.1%

p4 ≥ 18.7 %

p3 ≥ 50%

p2 ≥ 81.2%

p1 ≥ 96.8%



Probabilistic Bound (I)

�Group of s=1, 2, �, nk
cuts at iteration k�

nk is the k-th �group size�

Let s denote an index for multiple cuts at the same xk
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Probabilistic Bound (II)

�
�

�

�
�

�

�

∈∈∀=

=∈∀
−++≥Θ

�
=

kn

s

Ns
k

k

s
k

s
k

Kk

nsKk
x M

1
}1,0{;,1

,...,1,
,)1(

 s.t.
δδ

δ

Θ+
∈Θ

xc
Xx

'Min
,, δ

:KMP

Ak={At least one cut among nk in the k-th group lies below }*
kz

∏
∈∈

−=≥≤
Kk

n

Kk
k kAzKLB )5.01(}Pr{})(Pr{ *

�

nk =10 for all the groups guarantees Prob > 0.95 for 50 iters.
nk ≈≈≈≈ 7.8+1.57 log(k) (8, 9, 10, 11, 11, 11, 11, 12, 12,�)

guarantees Prob > 0.95 indefinitely 
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Computational Results (I)
SEMICONDUCTOR  WAFER PRODUCTION-FACILITY EXPANSION

αααα x Existing (LB,UB) New (LB*,UB)
0.00 CONT. (114.6,       -) (137.3, 145.8)

INTEGER (168.1, 179.9) (134.9, 179.3)
0.10 CONT. (34.24,       -) (138.6, 146.9)

INTEGER (86.6, 173.6) (135.8, 171.6)
0.25 CONT. (0.00,       -) (126.3, 131.7)

INTEGER (0.00, 153.4) (125.3, 149.4)

wafer 1

wafer m
... step 1

step s

machine 1

machine k
... ...

Proc. time

xk= # mach. type k
to be purchased 
(limited budget)

Demand

27 machine types (budget allows to buy 6 machines)
10 wafers: 5 scenarios of demand per wafer
7 steps: 2 scenarios per step-machine =  E (Tsm) ·[ 1 ±±±± αααα ]

From Morton and 
Wood (1999)     
Op. Res. 47, No. 6

(*) Prob. > 0.95 in all cases



Computational Results (II)

� xk= How much capacity should be added to each arc k in a 
communications network (limited budget)

Second stage: Minimize the unmet demand for point-to-point 
�connections� m
Each connection m may use different existing routes r
Different routes may share one or more arcs k

� Uncertainty comes from: Demand for connection m

NETWORK CAPACITY EXPANSION

Arcs Routes Dems. LB* UB Gap (%) MP time SP time
7 45 10 3.77 3.80 0.7 2 min 5 min

50 350 86 12.74 12.91 1.3 20 min 4 h
89** 620 86 9.75 10.21 4.7 4 h 30 h

(*) Prob. > 0.95 in all cases 
(**) From Mak et al. (1999), Op. Res. Letters 24: (LB,UB)=(9.22, 10.06) in 43 h



Computational Results (III)
NETWORK INTERDICTION PROBLEMS (I)

x(i,j) = 1 if interdiction of arc (i.j) is attempted, 0 otherwise

lij= Nominal Arc (i.j) Length (Shortest Path problem)

uij= Nominal Arc (i,j) Capacity (Maximum Flow problem)

rij= Amount of resource needed to attempt to interdict the Arc (i,j)

ξξξξij= Attack success for Arc (i,j) (Random variable):
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(�Delay� for the Shortest Path problem)

(�Diminished� capacity for the Max. Flow Prob.)
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Computational Results (IV)
NETWORK INTERDICTION PROBLEMS (II)

(*) Prob. > 0.95 in all cases 

(**) From Cormican et al. (1996), Op. Res. 46, No. 2

Problem 
Type Nodes Arcs

No. 
allowed 
Interd.

LB UB Gap 
(%) CPU Other 

methods

Sh. Path 8 21 6 0.298 0.304* 2.0 1.7 min
Sh. Path 50 893 10 137.9 142.1* 3.0 10 min
Sh. Path 150 1,853 20 12,111 12,718* 5.0 2h
Sh. Path 150 1,853 50 14,178 15,460* 9.0 3h

Max. Flow 4 5 2 2.11* 2.14 1.4 7 sec
Max. Flow 150 1,853 10 151.1* 157.4 4.1 8h

Max. Flow** 38 67 6 10.76* 10.82 0.6 2 min 1 min
67 ? 5.72* 5.94 4.0 2.5 min 6 min
67 ? 9 3.82* 3.99 4.4 4.5 min 4 min

Max. Flow** 37 72 6 78.8* 79.82 1.3 6 min 30 sec
72? 53.13* 54.95 3.4 5.5 min 8.5 min



Ongoing and Future Work

� What are the actual convergence properties of the algorithm ?
� How to obtain (valid) M�s as tight as possible ?
� Other representations that avoid the use of  M�s ? 
� What helpful information might be preprocessed ? :

� Cut dominance
� MP with �minimized cuts� and/or �average cuts�

� What is a �good choice� for the groups sizes a priori?
� How to handle the case when LB exceeds UB?
� What additional strategies in Benders Decomp. may be used ? :

� Elimination of inactive cuts (or Groups of cuts here)
� Trust regions, regularized decomposition

� Less conservative strategies in terms of the probability of success

� Other linear and nonlinear representations of the estimated cuts


